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Abstract

When using only reported empirical results, it has become difficult to identify
machine learning methods that provide meaningful advancement. One reason
is that results are commonly only reported using well-tuned models, and thus
represent an optimistic evaluation of performance. In this work, we propose
a new framework for evaluating algorithms that presents both the performance
when the system is well-tuned, as well as the difficulty of tuning the algorithm.
This is achieved by considering the distribution of performances that result when
applying the method with different hyper-parameter settings (e.g., different step
sizes and network structures). Using common benchmark tasks in supervised and
reinforcement learning, we demonstrate how this evaluation framework can both
evaluate an algorithm’s robustness to hyper-parameter selection and identify new
areas of improvement.

1 Introduction

As new algorithms are developed, a common set of benchmark tasks are used to evaluate and compare
to previous approaches. Based on the results reported on benchmark scores, it could be argued
that some algorithms have attained or surpassed human level performance on specific collections,
e.g., ImageNet [12] and the Arcade Learning Environment [7]. However, the style of using a single
benchmark score leads researchers to tune their algorithm’s hyper-parameters, e.g., steps sizes and
network structures, until performance is superior to other algorithms. As a result, this optimistic
approach to evaluation shows what an algorithm can achieve, not what it is likely to achieve.

The performance of an algorithm depends on four factors: the chosen hyper-parameters, seed of
a random number generator, available training data, and test data used to evaluate the model’s
performance. The current method of evaluation does not consider all these sources of variability.
Furthermore, it compresses the performance into a single metric which hides the variability of the
algorithm’s performance on each task. Previous work has proposed a more informative view of
algorithm performance by using the the distribution of performance obtained as an algorithm’s
hyper-parameters are changed [2]. We extend this work by providing an experimental procedure
for estimating the performance distribution as hyper-parameters, random seed, training dataset, and
testing dataset are changed. Additionally, we demonstrate this evaluation method on both supervised
learning (SL) and reinforcement learning (RL) benchmark tasks.

2 Current Methods of Evaluation

The current method to evaluate performance of a model or learning algorithm is to tune hyper-
parameters prior to reporting performance on a held out dataset. This tune-and-test procedure splits
the evaluation of the algorithm into two phases: a model search phase and an evaluation phase. The
model search phase involves manual tuning or using an automated search method [1] to identify high
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performing hyper-parameters that score well on a portion of the training set. The evaluation phase is a
single step where the tuned model is evaluated on the held out test data by computing a performance
metric, e.g., classification accuracy.

The performance from this method of evaluation discards a significant amount of information as the
reported score becomes a single random variable drawn from the probability distribution over the
model’s evaluation score. Reproducing results of this style of evaluation can be challenging. For
example, previous work [5] shows that extensive hyper-parameter search fails to reach within 10
points of published SQuAD benchmark results. As a consequence, results from literature are difficult
to reproduce and can lead to incorrect interpretations of performance [6]. Using a more informative
style of evaluation is necessary to limit the impact of these issues.

By posing an algorithm’s training procedure and scoring as a stochastic process, new and informative
evaluation questions can be formulated. Consider the training and scoring of an algorithm that
depends on a set of hyper-parameters, X ∈ X , a training dataset, Dtrain ∈ D, test dataset, Dtest ∈ D,
and random seed, S ∈ S, where X is the set of all valid hyper-parameter configurations for a
particular algorithm, D is the set of all possible datasets, and S is the set of all possible random seeds.
The training and scoring function, h : X ×D ×D × S → R, that maps a sample of algorithm hyper-
parameters, X , training and testing datasets Dtrain and Dtest, and a random seed, S, to a score, Z ∈ R.
The standard tune and test evaluation score can be rewritten in this notation as z = h(x̂, dtrain, dtest, s),
where dtrain ∈ D is an instance of training dataset, dtest ∈ D is an instance of a testing dataset, s is
the random seed used, and x̂ = argmaxx∈X E[h(x,D′train, Dvalidation, S)], where D′train, Dvalidation are
sampled from training dataset, dtrain. In practice however, the hyper-parameter tuning process is often
accidentally biased by the test set performance, i.e., x̂ = argmaxx∈X E[h(x, dtrain, dtest, S)]. This
results in higher performance when compared to hyper-parameters selected without any knowledge
of the test set. In the next section, we will use this framework to define a new evaluation procedure.

3 Distributional Evaluation

Using the notation defined above, the performance of an algorithm can be viewed as a random variable,
Z. For example, the expected performance of an algorithm where only the random seed is viewed as a
random quantity is E[Z|X = x,Dtrain = dtrain, Dtest = dtest] =

∑
s∈S h(x, dtrain, dtest, s) Pr(S = s).

A more critical evaluation of an algorithm can be considered by taking the expectation with respect
to all sources of variation e.g., E[Z]. An algorithm which only performs well on a narrow set of
hyper-parameters is likely to need additional tuning when applied to similar problems. An ideal
algorithm would perform well on a new problem without requiring problem specific tuning. Thus,
it is important to include variations in hyper-parameters when estimating the performance of an
algorithm. This is especially important in online learning and RL where the algorithm is evaluated
during training before any hyper-parameter tuning can occur.

The expected value of performance alone is insufficient to properly evaluate an algorithm as it discards
information about the variance in performance. A more useful representation of performance can be
obtained by considering the cumulative distribution function (CDF) of performance over all sources
of variance. The CDF of performance for an algorithm is the function, FZ : R → [0, 1], which
maps a score, z, to the probability that the algorithm achieves a score less or equal to that score, i.e.,
FZ(z) := Pr(Z ≤ z) where z ∈ R.

Using this distribution of performance allows for comparisons between algorithms with respect to
their variance. We propose that evaluating algorithm performance should be approached in two ways:
1) visually examining the CDF of performance and 2) evaluating numerically by statistics computed
from the CDF. The visual investigation by plotting the CDF allows for a quick interpretation of
an algorithm’s variability and range of performance. A numerical evaluation can summarize an
algorithm’s performance with respect to task specific performance constraints. For example, if a task
has a minimum threshold of performance required, zthresh, then an algorithm can be scored based
on the area under the CDF curve that meets this threshold, i.e.,

∫∞
zthresh

zfZ(z)dz, where fZ(z) is
the probability density of performance at z. Another similar measure is Conditional Value-At-Risk
(CVaR) [11] which computes the expected value of a random variable above a probability, α, i.e.,
CVaRα(Z) = E[Z|Z ≥ F−1Z (α)], where F−1Z (α) := argminz{z|FZ(z) ≥ α} is the inverse CDF
of FZ . When using CVaR, algorithms are evaluated based on the average performance of the top
(1− α) percent of trials, i.e., CVaR0.9(Z) is the average performance of the top 10% of trials. There
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exist another CVaR measure that computes the expected value below a probability, α, which, would
provide a measure of risk in this setting. However, in this work we use the first definition of CVaR.

We present our procedure, Distributional Sampling for Evaluation (DSE), for generating the empirical
CDF of an algorithm’s performance in Algorithm 1. In order to conduct this type of evaluation
there needs to be a method for sampling hyper-parameters for each algorithm. How this method is
defined can greatly affect results. For example, if one algorithm uses a sampling method that mostly
selects poor performing hyper-parameter combinations and another that only samples near optimal
combinations the former algorithm will appear arbitrarily worse than the latter. For this reason an
algorithm should specify how hyper-parameters should be selected. In lieu of these specifications,
hyper-parameter combinations should be sampled uniformly from ranges found in literature showing
the algorithm performing well on similar problems. This leaves open an avenue to improve the
understanding of an existing algorithm by identifying how ranges should be set.

While DSE is specified for hyper-parameters to be randomly sampled, automated tuning of the
hyper-parameters can be incorporated through modification of the training and evaluation function, f .
For example, inside f the hyper-parameters could be tuned using random search and cross validation
over the training set. In the experiments below, we use both DSE with automated hyper-parameter
tuning and DSE with random hyper-parameter sampling.

At first glance our approach appears to require additional computation time, however, time is often
already spent tuning hyper-parameters. Instead of discarding the results from sub par hyper-parameter
configurations, it could instead be used to generate the distribution of performance. Additional
computation time is thus minimized and the comparison to other algorithms is fair in that all
algorithms are run for the same number of trials.

Algorithm 1: DSE: Distributional Sampling for Evaluation
Input: algorithm training and evaluation function, f , hyper-parameter sampling function, φ,
data sampling function, ψ, and number of trials to run, N .
Return: empirical CDF, F , of the performance metric
τ ← [] Initialize list of performance results
for for each random seed do

s ∼ uniform(S) sample a random seed
x← φ(s) sample set of hyper-parameters
dtrain, dtest ← ψ(s) sample datasets
z ← f(x, dtrain, dtest, s) get performance metric
τ ← τ + [z] add performance metric to list

F ← compute_cdf(τ) Compute empirical CDF

4 Experiments

In this section we provide examples showing the results of DSE on several classification tasks and
an RL task. In the classification task we compare five algorithms, support vector machines (SVM),
k-nearest neighbors (kNN), random forests (RF), logistic regression (LR), and neural networks (NN).
Each algorithm is evaluated on four standard classification tasks found in the scikit-learn repository
[10]: moons, circles, linear, and face identification. The moons task involves classifying points on
one of two intersecting half circles, the circles task involves classifying points on an inner and outer
circle, the linear task separates classes by hyper-planes and points are noisily generated on both sides.
The face identification task uses images from the Labeling Faces in the Wild dataset [8].

We run two different experimental setups for the supervised classification tasks: DSE with automated
hyper-parameter tuning, and DSE with randomly sampled hyper-parameters. The same hyper-
parameter ranges were used for both versions and the details can be found in Appendix A.

In RL, a standard way to report results is to provide a learning curve plot that shows average total
reward obtained from each episode. This method is subject to high variance and not able to capture
the sensitivity of an algorithms to its hyper-parameters. To see how the distributional approach to
evaluation benefits RL we compare two algorithms: Actor-Critic (AC) [14] and Proximal Policy
Optimization (PPO) [13] on the benchmark task pendulum swing-up and balance [4]. For both of
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these algorithms hyper-parameters are sampled randomly from fixed ranges which are provided in
Appendix B.

5 Results
In this section we present the results from each supervised learning task and the RL task.

5.1 Supervised Learning

The performance distributions for both DSE approaches are given in Figure 1 and the performance
metrics are provided in Table 1. The provided plots are of the inverse CDF of the performance
distribution where the x-axis is the cumulative probability and the y-axis is the accuracy such that the
proportion of trials that have a value less than or equal to y is x.

Examining the performance distribution of DSE with automated-tuning, it is clear that the algorithms
share a similar distribution shape for each problem. However, there exist cases when an algorithm
deviates from this behavior, e.g., logistic regression on the circles and linear problems. This kind of
insight cannot be captured by reporting mean and standard deviation of performance.

In each distribution there exists an uptick and downtick in performance on the tails of each plot
that indicates rare coupling of hyper-parameters, random seed, and dataset variation that lead to
exceptional changes in performance. The reporting of upticks in performance could be used to falsely
show a new method as being superior. For this reason, only reporting performance from a few trials
is insufficient to claim superiority of one algorithm to another. Reporting a metric that accounts for
the variation in the performance distribution is more likely to indicate an increase of an algorithm’s
utility. This can be seen in the performance results in Table 1.
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Figure 1: Inverse CDF of test accuracy when hyper-parameters are randomly sampled (top) and when
hyper-parameters are tuned (bottom).

In DSE without hyper-parameter tuning approach it becomes clear which algorithms are robust
to hyper-parameter choices. The non-parametric algorithms: kNN and RF, both are less sensitive
to hyper-parameter choices compared to parametric algorithms. The SVM algorithm which was
consistently the top performer when using automated hyper-parameter tuning (bottom row in Figure
1) dropped significantly in performance when hyper-parameters were randomly chosen (top row in
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Figure 1). The gap in performance distributions between the two DSE methods indicates that there
is room to improve these algorithms by developing an understanding how hyper-parameters should
be set for each problem. By using the distribution of performance generated by DSE, these types of
improvements can be observed.

DSE-Tuning DSE
Algorithm Moons Circles Linear Faces Moons Circles Linear Faces
k-NN 0.918 0.893 0.803 0.649 0.914 0.889 0.795 0.624
RF 0.915 0.888 0.757 0.523 0.914 0.887 0.733 0.512
SVM 0.919 0.897 0.828 0.796 0.876 0.814 0.716 0.751
LR 0.859 0.552 0.627 0.802 0.859 0.531 0.624 0.788
NN 0.916 0.892 0.810 0.782 0.892 0.884 0.782 0.762

Table 1: The CVaR0.5 performance statistic for each classification task when the hyper-parameters
are automatically tuned (left), and randomly sampled (right).

5.2 Reinforcement Learning

In this section we examine the results of the RL experiment by plotting the distributions of perfor-
mance in Figure 2. The inverse CDF in Figure 2 shows that on this environment, with this method of
selecting hyper-parameters, the Actor-Critic algorithm is likely to outperform PPO. Both the mean
and CVaR0.5 performance metrics in Table 2 corroborate this finding. With both algorithms able to
achieve near optimal performance, this result could not be found using standard evaluation methods.
To compare to the standard evaluation method in RL we provide learning curves from single sets of
hyper-parameters for PPO in Appendix C. This further shows that the learning curves do not provide
a clear picture of the performance metric compared to plotting the distribution of performance.
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Figure 2: The inverse CDF of mean total reward
for PPO and Actor-Critic critic algorithms on the
pendulum environment.

Performance Metric
Algorithm Mean CVaR0.5

Actor-Critic 388.3 1476.2
PPO -342.1 363.8

Table 2: The mean and CVaR metrics computed
from the empirical CDF.

6 Conclusion

We examine the volatility of a variety of machine learning methods and demonstrate that using
traditional evaluation metrics is not an effective way to distinguish performance. Furthermore, the
proposed DSE framework provides an effective way to not only determine which method is more
likely to outperform the other, but how robust each method is to its experimental configuration. Future
work on this approach should focus on principled methods to determine the number of trials needed
to accurately evaluate an algorithm and provide statistical guarantees on performance.
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Appendix A Classification Experimental Details

The moons, circles, and linear tasks have generatabled datasets. For each task 2,000 points are
randomly generated and the train and test data is randomly selected with a 60%/40% train/test
split. The linear tasks has features in R10 and there are 4 classes with 2 clusters per class. The face
identification task uses images from the Labeling Faces in the Wild dataset [8], which has 1288 data
points, 7 classes, and the features used are the projection of the images on to the top 150 eigenvectors.
Since the face identification tasks is not generatable, the randomness in the data only comes from
a random train/test split. All algorithms and datasets used were implemented in the scikit-learn
repository [10]. Each algorithm and classification problem was run for 2,000 iterations of DSE.
For DSE with hyper-parameter tuning, the training and evaluation function, f , includes an inner
training loop that tunes the hyper-parameters. During the tuning process, 50 random hyper-parameter
configurations are sampled and the best performing set on a 3-fold cross validation of the training
dataset is used to evaluate the algorithm on the test set. DSE with tuning approach was ran for 2,000
iterations.

The hyper-parameters for each algorithm were selected as follows. For the k-nearest neighbors
algorithm the number of neighbors was chosen uniformly from the set {3, 4, 5, 10, 25, 50}. All other
parameters for the k-nearest neighbors algorithm were left as the defaults. In the SVM algorithm the
C parameter was selected from a (natural) log uniform distribution in the range[0.01, 100]. The SVM
kernel was chosen uniformly between the set {linear, polynomial, RBF, sigmoid}. When the kernel
was selected to be polynomial the degree was chosen uniformly from the set {2, 3, 4, 5}. All other
SVM parameters were left at their default values. The random forest algorithm used a number of
estimators to from a (natural) log uniform distribution in the range [10, 100]. The decision criterion
was chosen uniformly between Gini impurity and entropy. The minimum number of samples to split a
node was selected uniformly from the set {2, 4, 8, 16} and the minimum number of samples in a leaf
node was selected uniformly from the set {1, 3, 5}. The logistic regression algorithm used the saga
solver, an l2 penalty on the weights, maximum iterations of 1,000, and fit the y-intercept. Additionally
the C parameter for logistic regression was sampled form a log uniform random distribution over the
range [0.0001, 1,0000]. The neural network used the adam optimizer with a constant learning rate,
early stopping and a max number of epochs of 200. The activation function of neural network was
chosen uniformly from the set {logistic, tanh, relu}. The hidden layer sizes were chosen uniformly
random from combinations of [50, 100, 150] units per layer and using one or two layers. The learning
rate was randomly sampled from (natural) log uniform distribution over the range [0.0001, 0.1].

Appendix B RL Experimental Details

To see how the distributional approach to evaluation benefits RL we compare two algorithms Actor-
Critic (AC) [14] and Proximal Policy Optimization (PPO) [13] on the benchmark task pendulum
swing-up and balance [4]. For both of these algorithms hyper-parameters are sampled randomly from
the ranges which provided below. The ranges for PPO were determined from the paper introducing
it with sight modifications to make it perform better on this domain. The ranges were Actor-Critic
were set from a combination of parameters found in the literature. Both algorithms use a linear
policy and value function using the Fourier basis [9]. Each algorithm was run with repeated trials
for 12 hours spread across 1, 000 CPUs. The Actor-Critic algorithm was run for significantly more
trials, 3, 041, 685, than PPO, 17, 415, because it was implemented in c++ and PPO uses the python
implementation in the OpenAI Baselines repository [3].

Both algorithms used the same linear policy structure that used the Fourier basis with an independent
order of six and a dependent order of 5. Each algorithm also used a Fourier basis function for
the critic to use with independent and dependent orders uniformly sampled from a range [0, 10].
Additionally, both algorithms used the reward discount parameter γ = 0.99, a λ-return mixing
parameter sampled uniformly from [0, 1]. The actor-critic algorithm used actor and critic learning
rates sampled from a log uniform distribution from the range [0.0001, 0.1]. The PPO algorithm
used learning rate sampled from a long uniform distribution over the range [0.00001, 0.01], the
steps-per-batch parameter was selected from a log (base 2) uniform range of [16, 256], the number of
epochs was chosen uniformly over the range [1, 15], the batch size was selected uniformly from the
range [8, 64], and the importance weights clipping parameter was selected uniformly from the range
[0.1, 0.3]. All other PPO parameters were left as the defaults in the baselines repository.
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Appendix C Comparison to learning curves

To compare the distributional evaluation to the classic evaluation of learning curves we provide
learning curves for PPO with hyper-parameters selected from the 1, 50, 95, 99 percentiles of per-
formance on the CDF. To show the variance of performance, a distributional plot for each set of
hyper-parameters is given in Figure 3. In this plot it is clear the 99-percentile parameters are superior
to the 95-percentile parameters in most of the trials, however there are around 10% of trials that
contain oscillatory or diverging behavior that causes the mean return to drop. The fact that some sets
of hyper-parameters of a high amount of variance in performance is why performance of an algorithm
should be considered over variations in hyper-parameters and the distribution of performance should
be shown.
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Figure 3: Left: Solid lines represent the inverse CDF of mean lifetime return for PPO and Actor-Critic
critic algorithms on the pendulum environment. Dashed lines represent the slice of the performance
curved used in the middle and right plots. Middle: Learning curves for the PPO algorithm when
the hyper-parameters are selected from the quantiles show in the left plot. Solid lines indicate mean
return per episode with errors bars representing the standard deviation above and below the mean
computed over 1,000 trials. Right: Performance distribution of the same learning curves as the
middle plot.
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